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ABSTRACT 9 "’;)q 2}

In this report, several commonly used matrices and transforma-
tions employed in the description of polarized waves and in the reception,
scattering, and transmission of polarized radiation are found. The pur-
pose is twofold: (1) To provide a complete development of these import-
ant concepts to the person unfamiliar with them, and (2) to provide a
summary and reference of these matrices and their interdependence
relationships to the person who must frequently employ them in analysis.

The first section discusses and defines the representation of
general elliptically polarized waves in terms of orthogonal polarization
states; two sucn sets of states are discussed in particular, the linear
or Cartesian and the circular,

The second section develops and discusses the elementary scat-
tering matrix for a surface, relating the scattered electric field to the
incident electric field. Transformations between tne scattering matrix
in linear polarization states and that in the circular states, and the
relationships between the circular scattering cross-sections and the
linear scattering cross-sections are given in detail, The special case
of back-scattering is also discussed,

The concept of the vector height of an antenna is applied to trans-
mission and reception of polarized waves, and used to discuss the com-
plete process of transmission, scattering, and reception of radiation.
The determination of the elements of the scattering matrix of a stationary
surface from measurements of power is discussed, and typical plots of
power received from an arbitrary surface in various polarizations are
shown,

The Stokes parameters of a polarized wave are developed in terms
of the operational concept of the power received from an antenna, The
matrix relating the Stokes parameters of a wave scattered from a sur-
face to The Stokes parameters of the wave incident upon it is then derived
in terms of the elements of the simple scattering matrix, Detailed tables
are provided for a number of special cases of interest.
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SUMMARY OF CONCEPTS AND TRANSFORMATIONS
COMMONLY USED IN THE
MATRIX DESCRIPTION OF POLARIZED WAVES

I. REPRESENTATION OF ELLIPTICALLY
POLARIZED WAVES

Any general elliptically polarized electromagnetic wave the
electric field of which is in the plane perpendicular to the direction
of propaggtion may be represented in any number of ways| 7,9]. The
most common are the use of two orthogonal unit vectors (either ortho-
gonal in a real sense or in a Hermitian sense) to represent the polar-
{zed electric field, In all of these representations, the contravariant
components along these two unit vectors (the electric field components)
must be complex.

The most common representation of elliptical polarization is the
use of two of the tnree Cartesian coordinates (the third, z here, being
assumed as the direction of propagation). A wave with this representa-
tion has the following form:

E(t) = E, & e_j(wt-kz) + Ey 9 ej(wt-kz) .

In this case, Ex and Ey are complex quantities, representable
as shown below:

« = [Ex] &% Ey = |By] P .

However, one of the phase angles may be set equal to zero (or
absorbed by a shift of wt = @ in the specification of the time origin).
Therefore write these components as

=lEx|;Ey=|E 5=p - a,

YleJ‘



Here 0 is the difference in phase between the x component of
the E field and the y component, Now there are essentially three in-
dependent quantities wnich specify the polarization in the Cartesian
system, two of these being the magnitudes (always defined positively)
of the waves along the coordinate axes, and the third being the phase
difference between the two.

Since it is true that three quantities, in general, are necessary
to specify elliptical polarization in a Cartesian system of representation,
then it is reasonable to assume that any system employing two orthogonal
vectors to represent elliptical polarization will require three independent
quantities to represent the wave completely.

Although it has not been mentioned, it is possible that these three
indegendent quantities specifying the polarization (i.e., ]Exl, LEYI,
and 0) in the Cartesian system can vary with time. However, the
generally accepted definition of ''complete polarization' demands the
following: (1) The ratio of the magnitudes must remain constant, and
(2) the phase difference, 0, must remain constant, and may not change
in sign. These requirements are understandable when polarization is
viewed as a normalized ellipse traced out by the tip of the normalized
field vector in the plane perpendicular to propagation, In order for
this ellipse to maintain the same shape and orientation, it is necessary
for the axial ratio to remain constant (contained in the ratio of electric
field magnitudes), and also for the orientation of the ellipse and direction
of motion of the tip of the field vector along the ellipse to remain un-
changed (both determined from the sign and magnitude of the phase dif-
ferencel). Any wave which does not meet the above requirements of
the definition for ''complete polarization' is said to be ''partially polar-
ized", and may be represented as the sum of a completely polarized
wave and a ''randomly polarized' or "non-polarized' wave| 11]. The
discussion in this report is confined to completely polarized waves.

Many times it is couvenient or necessary to resolve an elliptically
polarized wave already specified in the x-y plane of one Cartesian system
along the axes x'-y' of another Cartesian system, both with the z and z!'
axes coinciding with the direction of propagation. The relationship be-
tween these two Cartesian systems may be viewed as a rotation of the
x'-y' axes of the second system by an angle ¢ in the counterclockwise
sense about the z axis from the original x-y axes when looking in the
direction of tne negative z axis, i.e.,, the direction from which the wave
is coming. The components in the new x'-y' system are given by (see
Fig. 1)



where

and

- X

Direction Of Propagation
Fig. 1. Rotation of axes.

nm A - A . _
E(t) = E_ix' ol (Wt=kz) o Eyly' eJ(wt kz)’

Eyt = Ex cos ¢ + Ey 8in ¢

EY' =-E, sin ¢ + Ey cos ¢,

Matrix representation gives a convenient way of expressing the

above relation between the components in the x'-y' system and those in
the original X-y system; matrix algebra can then be used to provide an
orderly method of finding the inverse relationship, i.e., the components
in the x-y system expressed in terms of the components in the x'-y!

system,

These representations are shown below.



Eyt cos ¢ sin ¢-l Ey Ey cos ¢ -8in ¢ Eyt
Eyn -sin¢ cos ¢ Ey ’ EY 8in ¢ cos ¢ Eyl )
Define
cos ¢ sin qﬂ Eyt E,
(1) [Tyl = ; = Tyl .
-8ind cos ¢ EY' E,
Then
1 cos ¢ - 8in ¢ Ex I Eyr
[T "= : =l T,] .
sin ¢ cos ¢ Ey Eyl

One reason a person may have for resolving the components in
one Cartesian system along newly defined axes x'-y' is that of making
the new x'-y' axes lie along the major axes of the polarization ellipse.
This is easily done by adjusting ¢ until the complex phase difference
between the new set of components Ex! and Eyt is identically w/2.

Another convenient set of orthogonal unit vectors (this time
orthogonal in an Hermitian sense) which proves quite useful in the re-
presentation of elliptically polarized waves are those which describe a
right and left circularly polarized wave; such a representation is con-
venient because right and left circularly polarized waves are employed
in many applications, and they are therefore familiar to many, In this
system of representation, an elliptically polarized wave is specified as
follows:

E(t) = ERQ ej(wt-kz) + ELII\ ej(wt'kz) .

As in the case of the Cartesian representation, Ep, and E; are
complex in general. The unit vectors, £ and T, associated with the right
and left circularly polarized components, respectively, have the following
properties:

A A
(?,f)=/1§-f*=l- =(l,/1\-)=0



and

(r,r)-’%?*:(?,i‘):’l -/l\*z 1,

The parenthetical notation above refers to the inner product in
a Hermitian sense, and may be used interchangeably with the dot pro-
duct notation as shown above.

In order to find the transformation between the components of
an elliptically polarized wave expressed in The Cartesian system and
its components in the circular system, it is helpful to examine first
the expression for a right circular and left circular wave in the
Cartesian system. Such an expression for the right circularly polar-
ized wave is given below:

— - ) A
Eg(t) = E1% eJ(wt-kz) —J'E1§'\ el{wt-kz) =<x

A .
'JY)E E; ed(@t-kz)

{2

The expression for the left circularly polarized wave has the
following form:

A A .
EL(t) = EZQ ej(wt-kz) + jEZQ e_](mt=kz) {}EJX)IZ_ E; eJ(wt_kz).

These expressions conform to the generally accepted definition
of a right circularly polarized wave as one whose total electric field
vector is rotating in a clockwise sense when looking along the direction
of propagation; the left circularly polarized wave has a counter clock-
wise sense of rotation when viewed in the same direction.

It is evident immediately that the following inner products hold

true:
) ()" (80). (38)
<4? 7)) w7
and

() 6 - ()



This suggests the logical defiaition for the unit vectors, 2 and f,
discussed previously, since both thes~ sets of unit vectors obey the
same inner product laws in a Herrnitian sense; therefore, define

A A ALLA
22 x_u/_) and Do _x_gz>
J2 12

It will be desirable, then, to find a transformation which will
relate the Cartesian components of a general elliptically polarized
wave to the components in the circular system of representation. This
transformation will be evident upon re-arranging the equation for an
elliptical wave in Cartesian coordinates as follows:

— A A 3 - A A 3 -
E(t) = Exx o9tk 4 £ ¢ Stk2) L [ X+ Eyy] eIt kz)

or

x 2 2 7

—_ Ey HiE L_ib jwt-kz) Ex-JjE A+'A jlwt=-kz)
. E)= | X .})("JY>J +( Y) X1y | ¢
( iz Iz © {2 1z ©

E(t) = (Ex+jE}>:/1§ Gi(wt-kz) | (Ex-_]jEx> 4 Jlet-kz)

= p

_— iE 3 -3 -3 .
E(t) = [(Ex‘zﬂ 2. (Ex‘;‘JEX) 5y (Ex-iEy) A +J.(Ex JEV)A] oJ(wt-kz),

or

From the last equation, the components of the electric field in
the circular representation are abvious:

{2

{z

Again matrix representation provides a convenient expression of
the transformation between an elliptically polarized wave represented
in the Cartesian system and the same wave represented in the circular

system; matrix algebra again provides a simple means of finding the
inverse transformation, i.e., the expression of the Cartesian components

ER=



of an elliptically polarized wave in terms of the circular components,
These transformations are given below.

PER« 1 J - ‘Ex_ —Ex- 1 L] E;
L 7 2 |z
1
EL —_— =) Ey Ey .L_ TJ_-__ EL
2z [z 2
Define
= ER Ey
lz [z
(2) [Tc] = ; = [TC] .
-
— = E1. EY
2 2
L\r — l_ . L -l
Then
11 Ey ER
2 2
[Tc]- = e ; = [Tc]™! .
-3
- E E
LJ—Z_ JZ_ - - y" - LJ

As mentioned previously, the Cartesian and the circular repre-
sentations of an elliptically polarized wave are only two of many methods
using orthogonal unit vectors for representing the same wave, The re-
presentation in Cartesian coordinates is oftentimes alternatively referred
to as representation by linear polarization states. It should be mentioned
in passing that all these methods of representing an elliptically polarized
wave by orthogonal unit vectors have one point in common; i, e., the com-
ponents of the unit vectors in any orthogonal representation lie at opposite
ends of a diameter through the Poincare' sphere. The two components in
the Cartesian system lie at opposite ends of a diameter on the equator
of the sphere. The two components in the circular system lie at the north
and south pole of the sphere. Since there is an infinity of different poss-
ible diameters passing through this sphere, there is an infinity of possible
orthogonal representations for any general elliptically polarized wave,
Actually, any two different points on this sphere, whether they lie at
opposite ends of a diameter or not, represent two different and indepen-
dent polarization states (although not orthogonal), and they may be used to



represent any elliptical wave (so long "8 neither of these points is a
"null' point [6 ] for that particular wave),

It should also be noted that an elliptically polarized wave, toward
which the full attention of this seciion has been devoted, is the most
general case; linear and circular peolarication of a wave are merely de-
generate cases of elliptical polarization, Thus the study of the most
general case applies equally well to these special degenerate cases.

The main points of this section have been a discussion of the num-
ber of necessary and sufficient independent pieces of information requir-
ed for the complete specification of the polarization state of a wave, the
definition of ''complete polarization'' of a wave, and a discussion of the
method of representing a general elliptically polarized wave by ortho-
gonal unit vectors was discussed. As one example, the Cartesian system
was examined and the transformation from one Cartesian system, x-y, to
another, x'-y', was found and discussed; the transformation and its in-
verse is a circular system; the transformation between the Cartesian and
the circular system was derived, along with the inverse transformation,
and is shown in Eq. (2).

. THE ELEMENTARY SCATTERING MATRIX
AND SCATTERING CROSS-SECTIONS DEFINED

An incoming electromagnetic wave is scattered by an element of
surface dA, as shown in Fig, 2. In the most general case both the in-
cident and the scattered fields are elliptically polarized, but do not
necessarily have the same polarization; thus depolarization takes place
because the surface element may involve some roughness, and because
scattering is not restricted to the specular direction in general, The
change in polarization state between incident and scattered wave upon
striking a surface element involving roughness will also be a function of
the frequency (and therefore wavelength of the wave, and also upon the
orientation of the element of area dA,

Since any two orthogonal polarization states may be chosen to repre-
sent the polarization of the incident and scattered waves, it ig advanta-
geous to choose representations amenable to the coordinate system selec-
ted and to the method of specification of the incident and scattering dir -
ections, The electric field vector, the polarization of which will be de-
scribed, lies in a plane perpendicular to the direction of propagation for
both the incident and the scattered wave, Two convenisnt representations
are in terms of the Cartesian or linear polarization states and in terms of
the circular polarization states, both discussed in the preceeding section.
First the polarization will be represented by the former method, and then

8
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Fig. 2. Scattering of a polarized wave
from a surface element dA.

the transformations of the preceding section will be used to convert to
the circular representation.

The usual arrangement of the coordinate system is such that the
vertical plane of incidence is the y-z plane, with the origin centered at
some convenient point on dA. Then the directions of travel of the in-
cident and scattered electromagnetic waves of interest (for example,
those shown in Fig. 2) are completely specified by the angle of incidence,
91 and the scattering angles, 65 and ¢g.

The most obvious sets of Cartesian unit vectors to choose for these
waves, both sets lying in planes pirpendiculaﬁ to the directions of pro-
pagation, are the unit vectors U;, ¢; and g» Pg» i.e., the two sets of
angular unit vectors in a spherical polar coordinate system along two
radii extending out from the origin, one in the direction the incoming
wave and the other in the direction of the outgoing wave. (Note: ¢i =
270° with the incident wave lying in the y-z plane). The components of
the electric field of the incident and scattered waves along these unit
vectors will be denoted by EEP E&, and Ese. Ef; » Trespectively.

Assume that the scattering process from the element dA is linear.
Then, by superposition, one can assume first that the surface is illuminated



only with a linearly polarized wave in the 6 direction, Eb The field
scattered in the direction (85, ¢5) will have a component of polarization
in the 64 direction, i.e., E§. The relationship which exists between
them for a given surface element, frequency, and orientation will then
define aji, where

e'jk.rs

ES - ali Eé H

0

dmrg

The time dependent exponential, ert, is dropped in this section. This
same linearly polarized incident wave in the 6; direction in general
produces a component in the scattered wave polarized in the ¢4 direction

also, E;. The relationship between E¢s and the incident wave producing
it, E1e. defines a;;:

e—jkrS
,|41rrsz

The same process can be used to define a;; and aj; , where this
time the incident wave is assumed polarized linearly only in the $y
direction; this incident wave produces components polarized along each
of the directions 85 and ¢4 in the scattered wave,

. .
E, = an Ef .

—jkrs ]
Eg = —e—— ala E‘;
4-rrrsz
and
s e-_)krs .
Eo= === anFy -
411'1'8

Since the scattering process is linear, superposition can be used
to express the total scattered field due to an incident wave with both
polarization components present. In matrix notation this relationship
becomes ‘

10



r 8 r 7 C ] L
’ 1 : '

Eg -jkrg | ann a Eg -jkrg Eé

(3) = £ z = [Ar] ]
4rrd »]4171'5
] i i
E¢ azl azz-] E¢ E¢
- - — a1

The a;; are functions of the particular surface element, its
orientation, the wavelength of the incident (and reflected) waves, and
the incidence and scattering angles, 8, 65, and ¢g. The subscript 1
refers to © and the subscript 2 refers to ¢, The left-most subscript in
a;; refers to the scattered field component which is produced, while
the right-most subscript refers to the incident field component under
consideration,

There are four elements of this scattering matrix | A1l. Each
of these elements may be complex, in general, Therefore, there are
altogether seven independent quantities associated with each scattering
matrix: four magnitudes and three phase differences. (There are only
three independent phase angles because a constant phase angle can be
subtracted from each of the elements in the matrix and be absorbed by
an appropriate shift in the time origin, making one of the elements of
the matrix, a1, for example, pure real.)

In the special case of back-scattering, where ¢g=270° and &g
= 6, it can be shown by the reciprocity theorem that aj; = aa. Thus
the number of independent quantities in the scattering matrix is reduced
to five., At any angles of incidence and scattering other than the case
of back scattering, i.e., bistatic scattering, no sucn relationship exists
between aj, and az, however, for an arbitrary surface.

The reason for the peculiar definition of the ajj, in which the factor
1/ 41rrsz was expressed separately, will be evident now when the expressions
for the scattering cross sections are examined., The scattering cross section
can be defined for any combination of incident and scattered polarization
states, Thus the scattering cross section relating incident power lineargy
polarized in the 9 direction to scattered power linearly polarized in the Vg
direction from the surface element dA at angles 8, 65, ¢g is defined as
follows:

anro Py 4nrS|Eg|® ,
“%(ei’es’q’s):Un(ei'es’q’s): Pié = ’Eb'z = |anl® .

11



The other scattering cross sections relating the ratio of power
present in each of the polarization states of the scattered wave to
those of the incident wave are similarly defined:

(4) oo, 65, ds) = 011 = |an]®,
Tap (6 Oy dg) = 01y = ’alz'z ’
o088, bg) = 021 = [aa|?,

and

0'¢¢(Bi, 95.;1)8) =022 = Iazzlz .

Again, the left subscript refers to the direction of polarization of
the scattered wave, while the right subscript refers to the direction of
polarization of the incident wave producing that component in the scat-
tered wave,

One can define the scattering cross sections, which relate scat-
tered power of any desired polarization state to the incident power pro-
ducing it, of any other polarization state. For example, ogy (6, 6, ¢g)
relates scattered power, right circularly polarized, to incident power,
left circularly polarized, which produces it, The formal definition is

4vrsz|E1§|z _

6, = = z
O'RL( 19 es:¢s) IEII ll ]aRLl

A scattering matrix relating a scattered field, specified in the
circular polarization states, to an incident field, also in the circular
states, has not yet been discussed or defined., However, it appears
that such a matrix would be of value, since, as seen above, the scattering
cross sections for the circular states are defined simply as the magnitudes
squared of the individual elements of such a matrix, in the same manner
as they were for polarization specified in the Cartesian or linear polariza-
tion representation. Such a matrix one could certainly measure for a
given surface element; however, since polarization specified in the cir-
cular representation is directly related to its specification in the Cartesian
representation, one would suspect that the elements of the Cartesian or
linear scattering matrix, [AL], would somehow be related to the elements
of a circular scattering matrix, [Ac]. The exact relationship can be found

12



easily by using the linear-to-circular transformations of the last .
section (Eq. (2)). The matrix desired has the following definition:

- - L
8 T 1
Er , FaRR arL| | ER
e JkTg
(5) =
. 41rrS
EL | 2LR 2LL| | EL |

The scattering matrix previously discussed and defined is the
following:

- — r . W
s i
Eg -‘ an  an W Ee
-jk
o= i_ri M

. 41|'rsz :
E¢ az az i E¢

- - - = )

a . - -
8 s 1 1
Eq 4 |ErR }::91 | Er
= [T.] and = [TH
i i
E§ EL EJZ Eg,
L | | !

Substituting these last two relationships into the previous one

results in the following expression:

[T =

FES~

e'jkrs

2

4Trrs

ail

azl

L

—
alz

[T~

azz

Now, premultiply this equation by [Tc] to give

+ The conjugate matrix must be used for the incident field because of

propagation radially inward toward the origin.

13




Ef{ air  ai
e-jkrB
-1
T == [T_] [T .
,|41rr 2
s
s i
LEL Lau azz [_EL J
From the above, one can see that the elements of the circular
scattering matrix of Eq. (5) are defined by
~ - i - — I - F —-
a L L a a L1
a = - 11 = =
RR 2agj, an an E 2 |5
-1
(6) = [Tc] [rd]7" = :
alLR aLL azi1 azz i J— azr azz +l- 'i
2 -
i ’ _ i o] 1 )

The individual elements of the circular scattering matrix are

_ all + azz - j(a]z - az]) . = apg - az; + j(au + a.zl)
aRL ™ 2 * 8RR p)

ai * az; + jlaiy - az)
2

aijl- az - jlaiz + az)
2 » alR”

aLL-=

From the first expression of Eq. (6) above, the inverse relationship,

giving the linear scattering elements in terms of the circular scattering
g matrix algebra: premultiply the equation by

elements, can be found usin

-1
[Tc]™" ana postmultiply it by [T.] .
p— — — -T — — [ — el 1
1 1 1 ‘..l
ailr ax aRR 2RI, z— -7: aRR aRL .]7 Z
-1
(M =[] (1=
azl 2z aLR aLL‘ -gj é— 2LR 2LL % %J
L - L - _‘r dL 4L
. agpL¥arrtaLLtaLR Japp-agptap-aig)
s an = 5 ioan = >

14



-j(aRItaRR-2LL-31R), ,,. = 2RL™®RR™*L1L*21R
2 P

- (7) az; =
cont.

From the relationships of Eq. (6) the circular scattering cross
sections will be determined in terms of the linear scattering matrix

elements.

2

1 . . *
O'RL = laRRI = Y [an + azz-J(alz - azl)] [au + az; - jlai; - azl)]

. x ., 3
[ai + 222 - jla1z - az1) ] [an™ + 22 +j(an® -axa )]s

N

2
oopn=gllanl? ¥ lazl+ lanl? +an
+ 2Re{a11 2™ -a12 azl*} +2Im{an*ai; +an azl*+ azz*alz +az; azl*}] .
In like manner,

1 2
o= lappl =gllaul® + laz)? + lanl* + faal?

a
R
+2Re{a1; azl*-au az2 }+ Zlm{axz*au + azl*au +ajzaz; *+az1 az *11,
1
Lo = IaRle =z[ Ialllz + lazz|? + |an |2 + |aml?

% * % * *
+2Re{aizax -ay a“*} +2Im{arzai tazan taz 83 +aza Mo

and

1
LR~ laLle =7l lan|? + [az]®+ |az]? + [aa]?
+ 2Re{anaz; -anzan’} + 2Im{a an+ai 2z +azan +amaz }] .

In the above equation, the expression Re{ } has the meaning 'the
real part of { }, ' and the expression Im{ } has the meaning "the imaginary
part of { }''. The above equations are rewritten below with the following

15



substitutions: ]au |z= T11, Iazzlz = 022 lax;_f’j = 0}, and lazxfz =
0,1, and using the fact that Im{x*y} = Im{-xy*} .

1 * *
(8) oRL= Zlon+ 022 401, +oa1+ 2Re{anaz; - anzan }
* * * *
+ 2Im{anaz -amaiz +azaz - 2za1z2 }) »

* *
[o-u+ 02t 013 + 051 - ZRe{au az; -aia;i }

|-

o =

RR

’ * * * *
+ 2Im{anaz + an alz - 22231 - azan }] ?
1 * *
OCLL= Z[ o11+ 033 401, +021 - 2Re{anaz; - ayzan )

* * * *
-2Im{airaz + amaiz - azax; - azgai; 3,

and

1 * *
opR=Flou+ 0+ 01, + 01 + 2Re{an1a;;, - arzaz }

*

* * %*
- Zhn{anazl -ajralz + azzaz; - azzaiz }] .

The specification of the linear scattering cross sections in terms
of the circular matrix elements may be done in a manner identical to
that used above to derive Eq. (8), this time using relations of Eq. (7).
The results are given below.

1
_ L *+ *
(9) 7= glogptopg *Ogp t oy t 2Relagya; Mg pa) %)
* % * *
1 % 4 *
01z = 'Z[O'RL-{- U'LR+ TRR + o1.1, - ZRe{aRLaLR aRRaLL }

* %
+ Z'Re{"aRLaRR taryaLL +aLRaRR* - a'LRE\LL"(}] ’
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_1 ¥ *
(9) oa = glogy+topp O RR O LL - 2Relagyierr t 2graLL )
cont.

* * * *
ZRe{_aRLaRR + aRLaLL + aLRaRR - aLRaLL ] »

and
T —l[ﬂ' +oypt0nppto + 2Re{a,,a * 4 *}
22 = 2lRIFOLRYTRRT TLL RL?LR © °RRZLL

2Re{a +

*x » t
api2rrn *arr®rr T ARy N -

*
RI2RR

For the special case of back-scattering, where a1, = an and o3,
= 0,1, Eq. (6) reveals that agy = ayr- Inthis case, the relationships
of Eq. (8) become

1 *
(10) TRLE Z[O'll + 022 + 2Re{anaz }l .,

1
CRR™ ZL011 + 022 + 401, - 2Re{an as, )} + 4Im{airan” - azy a3 »

1 % ] *
TLL=E Z[U'n“' 032 + 401, - 2Re {an1az2 } - 4Im{ana1; -azna H.,
and
1 *
O1.R= Z[“’u + 022 + 2Re{anraz; }] .
The main point of interest evident from the above equations is that
rr1= T rfor the case of back-scattering, just as 01, = 03 in this case.

The expressions of Eq. (9) may be simplified in this case also to the
following:

= _ - . 2
(11) o1 = [40’RL togrt+° LL+ Re{aRRaLL

%* *
+4Re{laprapy *agrape) I’

1
il %
o1z = g logg + opp - ZRefagpar; M
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11 =1 +o 2Re{a__a..‘}]
(11) Ta =7l r T "L eltapr*Lr’
cont,

and

1 ' *
2= 7[4opy* TRR* L1+ 2Re{agpay .}

%k *
- 4Relapyapy *ap;a; 7.

The significant point to note about all of the above transformations
is that the relationship between the linear scattering matrix, [AL], and
the circular scattering matrix, [AC], is a linear transformation con-
sisting of a matrix premultiplication and matrix postmultiplication, as
seen in Eqs. (6) and (7). This means that the elements of [AL] can be
expressed solely in terms of the elements of [AC], and conversely,

No such relationship exists between the circular scattering cross sections
and the linear ones, however. This means that the circular scattering
cross sections can never be expressed or found solely from a knowledge
of the linear scattering cross sections, and conversely, The reason for
this is apparent; the scattering matrices, [AL] and [AC]. each contain
seven independent pieces of information about the polarization - trans-
forming properties of the surface, These seven pieces of information
are all needed to completely characterize the polarization - transforming
properties of the surface. However, the four scattering cross sections
for each case contain only four pieces of information; they carry no in-
formation about the three independent phase differences between the
elements of the scattering matrices. Therefore they do not completely
characterize the polarization-transforming properties of a surface in
themselves, and one needs more information about the phase differences
of the matrix elements in order to relate the circular scattering cross
sections to the linear ones, and conversely.

The important relationships discussed in this section are the
definitions of the linear and circular scattering matrices of a surface,
given in Egs. (3) and (5). The relationship between the elements of the
scattering matrix and the scattering cross sections of a surface are
given in Eq. (4). The transformations between the elements of the cir-
cular scattering matrix and the linear scattering matrix are given in
Egs. (6) and (7). The relationships between the circular scattering cross
sections and the linear cross sections are given in Eq. (8), while the
converse relationships are given in Eq. (9). Then these scattering cross
section relationships are specialized for the case of back-scattering, and
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these results are seen in Eqs., (10) and (11), In the case of back-

scattering, it was seen that aj; = az, 01, = 033, and a = a .o =
oLpe (See refs. 1,2, and 6.) RL LR¥ RL

III. ANTENNA VECTOR HEIGHT METHOD
FOR SPECIFICATION OF RECEPTION
AND TRANSMISSION OF POLARIZED
WAVES

There are several methods of specifying the transmitted electric
field from an antenna and representing its polarization, but the concept
of vector height is one of the most useful[5,8,10]. Its use is restricted
primarily to the far-zone region only, where the radial component of
the electric field becomes negligible. In this case the components of

e electric field can be resolved into transverse components along the
9 and $ directions, where 6 and ¢ are the polar and azimuthal angles in
spherical polar coordinates, and § and $ are the unit vectors in the
directions of increasing 6 and ¢ and hence perpendicular to the radial
unit vector and direction of propagation. The antenna is assumed to be
located at the origin, The relationship giving the far-zone electric field
in terms of the vector height for any antenna located at the origin is the
following (see Fig., 3):

(12) E=J 57 i
where
Zo = intrinsic impedance of free space for plane waves (1207 Q),
r = radial distance from antenna at the origin,
I = terminal current at the antenna,

>
11

wavelength, and

h(6, ¢) 2 vector height of the antenna.

= dl
1"

The above definition illustrates that the only parameter which depends

upon the particular antenna chosen is h, the vector height. The quantities

I and A\ are considered input variables to the antenna capable of being con-

trolled by the user. Vector height, h, may be a function of A also,
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Fig. 3. Vector height of antenna at point P,

The vector height, h, can be plotted as a function of 6 and ¢ in
much the same manner as the gain function of an antenna, except that
in this case the components of h specify an amplitude and phase, and
not merely an intensity, There are two components of h (i.e., hyg
and hy) and each is, in general, a function of 6 and ¢; and each is, in
general, complex, having an amplitude and a phase angle. While the
gain function for an antenna is easily measured, since intensity is an
easily measurable quantity, the vector height of an antenna is not easily
measurable from any practical experiment, since measurement of the
vector height requires observing and preserving the phase difference
between the components of h, Therefore in most cases it is easiest to
calculate the vector height theoretically for a particular antenna rather
than attempt to measure it, even though the results may be highly
idealized,

As examples, the theoretical formulas for the vector height of
three particular simple antennas are stated here[13]: :

(a) for a short linear element of length 2L centered at the origin
and oriented along the polar, or z-axis,

— A
h=Lsinb- 040+ 8;
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(b) for a half-wave dipole antenna parallel to the z-axis and
centered at the origin,

. T e+0-$;and

ki g
y cor(Fen)
h=;

(c) for a small loop of area S with its axis along the z-axis and
centered at the origin,

—_ 2%S A
h=0‘8—jT gin 0+¢ ,

(Note: throughout this section it is assumed all voltages, currents,
and fields are sinusoidal with respect to time, and therefore the factor
e3*t has been omitted from equations. )

Instead of representing the polarized electric field and vector
height in vector form it is more convenient in many instances to repre-
sent them in matrix form as follows:

Eg| jz le/XF jZole~dkr | he
e [h] -
E 2\T 2\r h
¢ P

E=[E] =

Although hg and hy may be complex in general, it is always possible
to make one of them, say hg, pure real by subtracting the proper con-
stant angle from each component and absorbing it in a shift in the time
origin, Thus,

(14) hg= |hg| ; hy = |ho | Jo

In order to extend the application of the vector height concept to
the reception of elliptically polarized waves by an antenna of a particular
h, consider a plane wave incident from angles 8 and ¢; upon such an antenna
located at the coordinate origin, The wave has only transverse components
and therefore may be expressed as
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Here, r) is the radia]{ distance measured along the direction of
propagation. As before, Ejcan be made pure real, i.e.,

. _'6
(15) Ey = |EL E;:]E})le‘]z .

The minus sign was used here in contrast to the plus sign used
in the definition of phase difference in Eq. (14). The reason for this
convention is so that when 8; and 5; lie in the same quadrant, Eqs.
(14) and (15) represent the same direction of rotation of the electric
field vector to an observer looking in the direction from which the waves
are coming. The difference in sign therefore results because in Eq.
(14) for the vector height of a transmitted wave, the direction of propa-
gation is taken to be away from the antenna; in Eq, (15) the wave is pro-
pagating toward the antenna.

In obtaining the open-circuit terminal voltage produced by the
incoming wave upon the antenna located at the coordinate origin, the
8 and ¢ components of the incident wave are considered separately and
the resulting voltages are then added to give the total voltage. This is
possible because the reception and transmission by the antenna is as-
sumed to be a linear process, and therefore superposition may be applied.

By the Reciprocity Theorem[14], the open-circuit voltage produced
across the terminals of the antenna by the 6 component of the incident
wave acting alone is given by

V' =hoEl= |ng| |ES .

Similarly, the voltage at the terminals resulting from the ¢ com-
ponent of the incident wave acting alone is given by

. . . §(6; -6
V= by E] = [ng ! [E] 7708
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Therefore, by superposition, the total open-circuit terminal
voltage is given by

. | Eg _ i
(16) V=V'+V"=hgEL+ hy EL = hghy = [h] [EY =k -E .
6" o rp T ¢,E1
¢

The above equation illustrates the different ways of representing
the reception, i.e., by a sum of algebra products, by matrix product,
and by a vector dot product; all say exactly the same thing. The super-
script ""T" above a matrix refers to the transpose of the matrix, e.g.,
the transpose of the column matrix of this case is a row matrix. As
seen previously and as will be more evident later, the matrix method
proves to be the most convenient, especially when considering the
reception of scattered waves.

In this section, the concept of vector height of an antenna was
discussed, and the polarized electric field transmitted by an antenna
in terms of its vector height and terminal current was given in Eq. (12).
Several examples of vector heights for particular simple antennas were
cited in the relations of Eq. (13). The extension of the vector height of
an antenna to its reception of a general elliptically polarized wave was
discussed and the terminal voltage of the receiving antenna is given in
Eq. (16).

IVv. TRANSMISSION, SCATTERING, AND
RECEPTION OF ELLIPTICALLY
POLARIZED WAVES

In the previous sections, the representation, transmission, scat-
tering, and reception of elliptically polarized radiation wave were all
considered separately. In this section, these concepts will be combined;
an expression for the voltage (and power) induced in the receiving antenna
after transmission by a separate antenna and after scattering by an
arbitrary surface will be found, as a function of the current at the
terminals of the transmitting antenna, This voltage will be a function
of the polarization properties (vector height) of the antennas and their
particular orientation about the lines of propagation to the surface, 1
and r., It will also be a function on the scattering properties of the sur-
face (the scattering matrix elements) and the orientation of this element
along with the directions of incidence and scattering from the surface to
the transmitting and receiving antenna (see Fig. 4). Finally, it is a function
of the frequency of the radiation.
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Fig. 4. Bistatic scattering

It is assumed that the medium is homogeneous and isotropic, and
that the distances from antennas to the surface are large enough so that
the far-zone approximations are valid. For the present, it is assumed
that the surface element and antennas are stationary with respect to one
another.

The motivation for such an analysis seems quite evident. Given
all the properties of the antennas, their orientation, and the properties
of the scattering surface for a given frequency, find the voltage induced
in the receiving antenna for a given current at the transmitting antenna
terminals. However, the main purpose of these studies is somewhat the
converse of the above statement; i.e., given the properties of the antennas
and their orientation, what properties of the surface (involving the scatter-
ing matrix elements) can be determined from measurement of the receiving
antenna voltage (or power) for a given transmitting antenna current and
frequency. For this purpose, it is convenient to choose the simplest pos=-
sible antennas (having easily describable vector heights) in the measure-
ments, so that mathematical determination is not too burdensome. There~-
fore, linear-favoring antennas will be considered first; such an antenna
which transmits a linearly polarized wave is the hali-wave dipole antenna,
discussed in Section III; its vector height is given in the second expression
of Eq. (13). Then, circular-favoring antennas will be employed also be-
cause linear antennas alone cannot describe completelv the surface
properties.

24



Consider now that the transmitting antenna is a half-wave dipole
aligned with its axis pointing toward the surface (at the coordinate
origin) along ry, and so that it lies in the plane of incidence, the y-z
plane. Then let the receiving antenna be aligned with its axis pointing
toward the surface along r,, and so that it is rotated about its axis by
an angle @ from the plane of scattering (@ is positive for rotation in a
clockwise direction when looking toward the antenna from the surface
element).

The transmitting antenna vector height, expressed in the coordi-
nate system shown above is,

A
- 1r
0

ht=

A
where the upper element refers to the component in the +9; direction,

The vector height for the receiving antenna is

cos @
hr =
sin Q

1
A|> aly

where the upper element refers to the component along the +6$ direction
and the lower element refers to the +$s component.

Therefore, using the scattering matrix concept, one can immedi-
ately write down the value of the open-circuit terminal voltage at the
receiving antenna:

Z.1I
Z,1 1N 1 ann a1
:jzxo .L.; ""—zerOSG-SinG:
Ty ™ -
azl aza 0
Z A
Vy = _—mo (a11cos @ - az sin @),
v 4rtrs.1r
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Now, assume that the transmitting antenna is rotated about its
axis by an angle w/2 so that its vector height has the following form:

o

ey | -

3>

In this case the voltage at the receiving antenna is given by

jZo

(18) Vp = —4—1'r1'—s-_T"s z (aiz cos @ - a3, sin @),

In these two expressions, Eqs. (17) and (18), are found all the
four elements of the scattering matrix, It would appear at first glance
that from an exact knowledge of Vys Vhs and I for a set of measurements
at several values of @, one could exactly determine ail, aizy azl, and azz.
However, in practice this involves an exact knowledge of the magnitude
of Vy,» Vh, and I, and also an exact measure of the phase differences
between I and V_, vy, I is the latter information which is difficult to
obtain accurately in practice. Therefore it is generally more conven-
ient to measure magnitude information, or power. Such ‘‘power', or
intensity of the voltage, is defined as follows:

P=|V|]* v. v .

Thus the absolute value squared of equations (17) and (18) gives
an expression for the power received in terms of transmitted power and
angle of rotation of the receiving antenna, @, at both transmitting
antenna positions,

19 P, = * 2 —577sz z 12
(19) vE VyrVy = 4rr T

(al1cos @ - ay sin a)(an* cosa - azl* sin ),

2
P, = o |112 (Ja11]2 cos? a - 2Re{ap an™}
v <4rtrsﬂ'572>

cos Gsin @ + |az|? sin? a),
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or
Zoh 2
I 112 (|ai1]|2cos? @

rtrsﬂ

J
n

- Zlalll laul cos Oy cos a sina + lan[z sin? a),

where ) = phase difference between aj1 and aa.

(20) Py = Vi Vi = ——,—Z°)\ )zlllz
h h™'h 4rtr,5'rrsz

. * x
(a13 cos @ - az; sin Q)(a1;” cos @ - az; sin a),

Zo M : 2 2 2
a
Py = (g ) 112 (lasal® cos
- 2Re {auan*} cos O sin & + lau.lz sin? a),

or

. 7\ 2
o= () I el cont o

-Zlalz”azz| cos 62 cos @ sin @ + lazzlz sin? a),

where §; ® phase difference between aj; and az .

It is apparent from Eq., (19) that after three measurements of power
at properly chosen receiving antenna angle (e.g., =0, /2, and n/4), the
quantities Iaul, Iazll, and cos 8; can be determined, After three similar
measurements with the transmitting antenna horizontal and by use of Eq.
(20), D-4, quantities |aiz|, azzl, and cos 0; can be determined.

In addition, it is interesting to note the form of Egs. (19) and (20); if
one considers the quantities |au F, anl. and cos D) as parameters of a
given surface and plots Pp as a function of @, rotation of the receiving
antenna, the polar plot is a variation of a familiar figure, the ellipse.

The general equation for an ellipse centered at the origin and with major
axes, in general, inclined is
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x2 2

2xy cos O
+ y - ——Y—i—— =
A“sin“*® BZfsin’ b ~ ABsin®® L.

Upon conversion to polar coordinates this becomes

r? cos* o r?gin? a 2r? cos @ sin @ cos b =1
A¥sin® &' B¥in% b AB sin® © ’

or

1 1 2 ( 1 )
= cos“a- 2 cosd| cos a sgina
a (Az sin? 5) ABsin? b

1
2

Now if one substitutes

Jsut = 505
2l = A gin b

|an| =55 F
2l B sin b °*
and

l 2

1
:_'{=Pv=|Vv ’

one arrives at Eq. (19). Therefore, if one were to take the inverse of
the square root of Py, as a function of @, he would obtain an ellipse,.
Several of these figures are shown for various values of

|an|

Iazll

and cos 0; in Fig. 5.

The following quantities in the scattering matrix for the surface
have been determined from power measurements thus far, viz., 'aul,
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Ian’, 'anl. !au,, cos Dy and cos §;. The remaining problem is to
determine the signs of angles 6; and 0; and the remaining independent
phase difference in the scattering matrix, The quantities cos 91 and
cos 6; do not uniquely determine b; and §,, The remaining problem
at first seems trivial: make a few more measurements at different
transmitting antenna angles than 0 and w/2. However, this problem,
upon investigation, is more complex than it seems. Such measurements
yield involved expressions containing the remaining phase angle in
question, but there is still an ambiguity in the sign of various phase
angles, There is some question as to whether all of these independent
phase differences and their proper phase angles can be determined by
transmitting and receiving strictly linear polarization, as previously
discussed., If such a determination is possible, it is, at best, an
involved process,

However, if one employs circularly polarized antennas, these
ambiguities can be resolved quickly., There are many possible schemes
involving circularly polarizing antennas which can do the job, and the
schemes chosen here are by no means the only possible one. However,
they are simple, both physically and in the interpretation of the results.
Assume that from the previously described linear antennas, cos 01 and
cos B8; have been determined along with the four magnitudes of the
scattering matrix elements, Left to be determined first are sin 03 and
sin Bz, which then uniquely determine & and 5;. Finally, 5; must be
uniquely determined. In the next paragraph, a simple scheme for find-
ing sin by and sin 6; will be described.

In this system, a linear polarizing transmitting antenna, along
with a circular polarizing receiving antenna, will be used in measurement
of power scattered from a surface. For generality, assume that the trans-
mitting antenna is rotatable by an angle @& from 9.1 in a clockwise direction
when looking toward the surface along the direction of propagation of the
incident wave; both antenna vector heights are normalized and given
below,

cos Q 1

sin @ 1]
The top sign on the lower element of the receiving antenna indicates that
the wave emitted by this antenna, if transmitting, is left circular; the

bottom sign indicates right circular. The voltage received, therefore,
is given by the following:
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vLc = k[h,.]T[a] [ht] = k[ancos @ +a);5in @ +ja, cosa +jagy sinal.

Therefore the power received is proportional to the voltage squared
and is given below.

* * *
Pbc=Vic " Vic*= K{annan cos? a + ajai; sin® @
* _ *
+ 80212 cos Asin @ + ajyay; cos A sin @

* 2 *
+ aziazx cos ° @ + azaz sin‘a
* . %
+ aztaz; cos A sin @ + a;; a; + cos @ sin Q@

. * 2 - *
Jairazi cos” Q + jajz a;y cos 4 gin Q

+4

T * . * . 2
+ jairazz cos @ sina ¥ jaizaz; s8sin Q@

) * 2 _ *
1 jaziamg cos® @ + jazjai; cos @ sin Q

%
2
* ai1azz cos @ sin @ % jajzaz; sin Q) .

The angles as defined in Eq. (24) are used to simplify the above
expression,

il

(21) Prc= K{[laul* + |an|*cos® @ +[|ana|? + |az|*lein’ o

-+

2f IanHalzICOS(f’s-%) + |laallazalcos(8y-8;)]cos @ sin @

ZlanHaufsin 51cosz a ¥ Z]alzllazz’sin 6, sin? a

+¢

Z[Iau”anlsin O3 + ZlanHanlsin (61456, - & )] cos a sin a},

-+

Although the above expression for received power is not simple
mathematically as it stands, it can be simplified by choosing @ judiciously.
If @ = 0 (transmitting antenna vertical), then

(22) PLC = K{ lalllz+ ]azllz ¥ Zlan”aulsin 51} ;
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if @ = w/2 (transmitting antenna horizontal), then
2 .
(23) PLC"‘K{[alzl + lazz’zT’Z[auHazz]sm 5;} .

The above two expressions are quite simple and readily yield
sin b; and sin ©; after the four magnitudes are known, The upper
sign in the last term refers to a receiving antenna which itself trans-
mits right circular (and therefore best receives left circular) polari-
zation.

- An alternative scheme can be used when the transmitting antenna
is circular and the receiving antenna is linear. The angle @ here denotes
clockwise rotation of the receiving antenna from és (vertical) when look -
— ing toward the antenna from the surface in the direction of propagation;
the upper sign on the lower element of the transmitting antenna vector
height again represents an antenna which transmits a left circular
wave., The results are merely stated below,

1 cos Q
h, = . K =
t ' ’
+j * -sin Q

.. PCL = K{ [ Iau,z +|a.21|z]cosz o + [lanlz + lazzlz]sinz Qa

- Z[Iau”aleCOS 6 + |azz”alz|008 6,]cos a sin @

1+

2|a1]]aiz]sin(bs -By)cos? @ + 2]az;||az|sin(By -6;)sin? @

[Zlaullazzlsin(ﬁa—ﬁz—m) + Zfan“an’sin O3]cos a sin a} .

+1

Fora=0

Per, = K{|anl? + |aa]? ¢ 2|an||aia]sin(8; -61)} ;

for a =n/2

PcL = K{ lalzlz + ’azzlz b Zlalz"azzls’ln(ﬁa-f’z)} .
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It is not immediately obvious whether the above two expressions
can uniquely determine 8y if all the other quantities are known; it
might turn out that each of these two expressions yields the same two
choices for O, which does not eliminate the ambiguity.

There is one remaining scheme to be investigated which will
definitely clear up the ambiguity in sign of b3 (and also can be used
as an alternative to the above method for resolving the ambiguity in
5y and 5;). This involves the use of circular polarizing antennas for
both transmitting and receiving. In this case it is easier to describe
polarization states and the scattering matrix in terms of the circular
representation. Thus, for antennas, both of which transmit right
circular, we have

hy = s ho = i lal = .
0 0 alLR aLL

Then the voltage at the receiving antenna can be written as

—— |®RR 2RL| |1
Vegg = kI 1 0 =kIlagp

ajr aLL| |0

and

PCRR = VCRR-VCR;= k2 |12 IaRR]2= K2 |1 2 oRR -

In like manner, a left circular transmitting antenna and right
circular receiving antenna yield a power return

Pcgy, = ¥ [1/*ogy .

The other combinations of circular antennas give similar results,
The circular scattering cross sections can then be expressed in terms
of the linear scattering matrix elements, as given in Eq. (8). At this
point it is convenient to formally define and express tke angles between
all of the elements of the scattering matrix.
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- (24) é}i "@ =0 ; Re{alzazl*} = ]alz”azllcos B »

lam -Loap 25, ; Re{anaz™} = |an!|azlcos(b;-6;-81),
B and
foul ~fon E By ; Im{anan”} = - |an|aal| sin & ;
e fon 'él = by -5 ; Im{ana*} = + |an!]asz] sin(8y -61),

H Il'n{azzazl*} = - ]azzHazl|Sin (68"62)s

4
’\é’\
"
m@
o

_ and

lazz”au,sin 5; .

*
6;+5;, -8y ; Im{azz a1z }

ba - fu

Using the above relations. the power received by the various com-
— binations of the circular antennas can be written as follows:

k 2
- (25) PcrL = (E) l112[|an|? + az]? + lawal? + |an]?
+ 2|ai||az|cos(by -5, -61) - Z!an”azllcos 5,
-2|a1l|a1z]sin(8y -51) - Zlazz”azllsm(ﬁs'ﬁz)

-ZlauHazllSin & - ZIa;;”alzlsin 5.1,

2

PCRRz (}ZE) 11|12 [an|® + lazz |2 + la1|? + |aa]?
-2|an|azz|cos(b3 -5, -81) + Zlalz”azllcos 03
+2|an||aiz| sin(8; - 8y) + Zlazz”azlls’ln(f’a-ﬁz)

-Zlaullagllsin B - Zlazz”alz’sin 5.1,

2
PCLL=('§) lllz[la11|z+ lazzlz+ |au|z+ 'azllz
- zlallllaZZICOS(E’s‘bz—&l) + Z'alz“azllcos 63

= 2|al ”alzISin(bs-ﬁl) - zlazz”azllsm(&z'bz)

+ 2|an”an'Sin o + ZlazzHalz'Sin 5,1,
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and
Pe. = X zhlz[laulz"' la22[2+ larz|® + lan |*
LR 2
+ ZlanHazz]COS(ﬁa"ﬁz*bl) - Zfa;z”azllcos o)
+ Zlan”alzlsin(ﬁ:,;-bl)& ZQIanHan!sin(Q-Gz)

+ Z!au”az;]sin B; + Zrau”alesin 52] .

The right-most subscript in the above expressions for received
power refers to the polarization state of the transmitting antenna, while

the middle subscript refers tc the polarization state of the receiving
antenna, both being either right or left circular. Upon adding the first
equation to the second, one obtains

2
2 P+ Pong = 2(5) I anl ¢ faul? s laul*+ faul?

= ZIau”az;'sin b - Zlazz”alzlsm 5,1 ;

upon adding the first equation to the third, one obtains

2
(27) PCRL+ PCLL= 2(%) lllz[lanlz+ |azz|z+ laulz-&- ]azllz

- 2’311”8-1;'8‘111(63-51) - ZrazzIIan'S’m(ﬁs-ﬁz )

and upon adding the first equation to the fourth, one obtains

2
(28) PCrpt PCyp=2 %) 1112 [anl® + Jaza]? + |ana|® + |am|?

+ Zla11||azzlcos(53-5z—6x) - Zlan”anlcos 53] .

Assuming that lau!, Iazzl, Ialzl, lazx,l, cos 01, and cos 5; have
already been determined from power measurements previously described
involving only linear antennas, the sign ambiguity can be resolved in 8
and 5, by using Eq. (26). Then Eq. (27) would result in a choice of two
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possible values for b3, while Eq. .28) would definitely eliminate one

of these two possibilities. This scheme might prove simpler and more
straightforward for finding the angles than the one involving a com-
bination of linear and circular antennas.

In this section, the complete representation of the transmission,
scattering, and reception of a polarized wave is discussed and expressed
in matrix form. Then the application of such a representation to the
determination of the scattering matrix elements of an unknown surface
by measurements with antennas of known characteristics is discussed.

A practical method of determination of these elements involving measure
ment of power or receiving antenna voltage magnitude is explored using
linear and circular polarizing antennas. The relationships for power at
the receiving antenna for the linear ~ases are given in Eqs. (19) and (20).
Rotation of the receiving antenna is discussed and the power patterns are
studied, Ambiguities in s1gns of the phase differences of the scattering
matrix elements determined from power measurements are encountered
and resolved simply by employing circular polarizing antennas, The
results of this section were derived for surfaces stationary with respect
to the antennas. Each element of the scattering matrix is a function

of the surface position, angles of incidence and scattering, and frequency
of the radiation.

V. INTRODUCTION OF THE
STOKES PARAMETERS

Thus far, the various methods of representation of a polarized
wave (i, e., linear or Cartesian orthogonal states and the circular
orthogonal states) have all had one point in common, i.e., they inher-
ently involved complex elements in the description of the polarized
fields, antenna vector heights, and scattering mat~ix elements. As
briefly mentioned, at high frequencies phase difference information
is very difficult to measure, On the other hand, intensity or magnitude
measurements can generally be made without much difficulty. This is
especially true with light waves, where intensity is quite easy to obtain
experimentally; but phase differences (e. g., phase difference between
the source and the point of reception) are impossible to obtain since
many frequencies are present, (This is not to say that the effects of
phase differences are not important, since many experiments in light
are based upon a shift in phase, such as inteference experiments.) In
the previous section, it was mentioned that practical measurements of
the scattering matrix elements for an arbitrary surface involved mea-
surements in receiving voltage magnitude or intensity instead of phase
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differences, All this suggests the possibility of finding another method
of representing polarized waves employing pure real elements, since
power measurements involve only real physical quantities,

One such method of representation of polarized waves, involving
only real elements, is the representation by the Stokes parameters[3,
4,11], There are several demands upon such a system involving pure
real numbers:

(1) They must contain a complete description of the polarization
properties of a wave.

(2) Since it was shown in Section I that any elliptically polarized
wave contained essentially three independent pieces of information when
it is completely polarized, any new method involving real numbers
(even though there may be more than three elements) will contain only
three independent elements; therefore there must exist dependency
relationships among the remaining elements.

(3) Such a method of representation using pure real numbers
must be invariant under a change in the orthogonal representation of
the same wave (i.e., as seen previously, any generally elliptically
polarized wave can be specified using either linear or circular polar-
ization states; the new method using real numbers must be the same
for the same wave, regardless of whether one started from the circular
representation or the linear representation).

This latter property of invariance can be dismissed at this point;
it has already been indicated (shown in detail for the circular states)
that there exists a one-to-one transformation from the many representa-
tion states on the Poincare sphere to the Cartesian, or linear states.
Since such a transformation is possible, any wave can be specified in
linear polarization states and the new system can be developed from
these linear states; the implication is that such a representation is the
same regardless of whether the wave was actually represented in linear
states or not.

At this point, the Stokes parameters for any polarized wave will
be developed by proceeding from an established physical quantity, i.e.,
the vector height of an antenna. Consider a transmitting antenna of
arbitrary vector height [ht] and a receiving antenna of arbitrary vector
height [hr]- These vector heights are directly proportional to the polar-
ization of the wave which these antennas would transmit. An expression
will be sought for the power at the receiving antenna due to the transmitted
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wave where there exists no scattering of the transmitted wave. Let

the vector heights be specified using the linear method of representation,
choosing linear vectors along 9 and # and the angular unit vectors in
spherical polar coordinates, and arranging the system so that propaga-
tion from transmitter to receiver takes place along a radius from the
origin. Except for a constant (which shall be omitted throughout the
discussion), the normalized power at the receiver terminals is given

by

h‘g, 2
M .1
P= (bl T[] [* = | 2§ ] h

r r ot r¥ t¥ ¥tk
= (hghf+ hyhy )(hg hg +hey By ).

The representation desired is one in which the polarization pro-
perties of the transmitting antenna can be represented by pure real
numbers; and likewise for the receiving antenna. The power received

should be expressible as some matrix product between these sets of
real numbers:

» » * * x_tk x ]
P = hihy hbh§ +hihhhd hE +hEhEhI by +hIhY hih .

If one adds and subtracts the same terms to the above equation
and re-arranges them, he can arrive at the following expression:

—

1 Pk x, 1 * S O *
P == r¥ ot t® | Ay TRt gtk oo r¥ ot ot Zrr¥.t it
7 hdhy hghg + Zhghg B R+ Zh by Hhg +Zh bR By

1 r¥ ot t*® L r r¥ t t¥k 1 r prk t tk 1. r r¥k_t._tk
ZhrXhE niht - = - o

ror¥ t_ tk 1 rkor tkt I % r txt 1 r r¥* t _t*
+Eh¢h9 he he +2h¢, hghphg +5hp hohphg +Zh9h¢ hg hy

1 r x* ¢t t% 1 r* r t*xt 1 r¥x r tkt 1 r ¥ t t*
+Eh¢h9 hq)he -th) hehb hg- Ehe hq>h6hq> +Eh9h¢ heh¢ .

The extra terms were added so that each line of the last expression
could be factored as follows:
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I r r* r.r¥ t _t* t, tx

1, r r*

t*x
> (hg hg

r.r¥, t  t* t
- hyhy )hghg - hyh

+ ¢)

1 r rx  rork t tk _t t¥
*3(hyhg + hghy)lhyhg +hghy )

1 * t* t t  t*
-5 (hy hg - h;;hg);(hq) hg - hyhg ) .

In matrix notation, this expression can be written as below:

-
t. .t% .t t‘-\
hGhB +h¢h¢
2

t . t* .t _t*
p p pa hehe -hq’h

I r r r r
hy  hyhg -hohy Iz

* ]
)| bl nd +hg h;

(29) L. s e

o 9
2

t L t* ,t L t®
h¢h9 'hehq:
iz

L

or

RUNSCE
3
. e [n§ 12 - [nt 12
Tip, T Tia_ | r|: ZR,{h"h"} 2Im{h"hr"}1
(30) P ihgi® + ihy! Ihg | hgy , one oo z

= Iz P r

2Re{ninE’}
Tz

2tm {B{hE" }
{z
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— At this point, it is convenient to re-define the above matrix
elements as Stokes parameters:

2 2 ES %
- ) o In§1° + Ing! _ h§h§ " + hihd |
( ) \{E 2 ’
t 2 t2 t ¥ t, t#
h; < qhe’ + ’hd)] ;hehe +h¢h¢ '
B 7
r 2 r r, r¥ r r¥k
P S A
2 ﬁ \I-Z_
t,2 t t otk Lt tk
nt = Ing!® - |hy|? hehg - hyhy ,
J2 Jz
%* x %
oF = 2Re{hghg } _ hghd + hghy
{2 {2 '
t g 2Re{hihE'} hERE* + nfnt*
hs = = ¢,
B 7
and
2Im{h’hE¥}  wInE¥ - nEpF*
ni m oh6 } _hohg - heby
Jz iNZ

nt s 2Im{h§nE*} _ nEnt* - nbr*
Jz iz
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Therefore, the power received may be expressed in terms of
these newly defined Stokes parameters:

|
~ r r r' |Db%
(32) P= hfh; hg hy N .
b 1
t
Lh‘_

These Stokes parameters have the following properties, evident
from the above expressions:

(1) The elements have been separated into two matrices; each
represents the polarization properties of the wave which would be trans-
mitted from that antenna, Each element of a matrix is given in terms
of combinations of the components of the vector height of that antenna,

(2) The product of two such matrices represents received power,
whereas the product of two vector height matrices represents a complex
received voltage.

(3) Each Stokes parameter is pure real; this is easily seen from
the form of the first definition of these quantities in Eq, (31).

(4) There are four elements in each matrix representing the
polarization state of a wave transmitted from that antenna; since there
are only three independent pieces of information present in any com-
pletely polarized wave, these four elements are not independent. There
exists one dependency relationship between the Stokes parameters.

In order to discover the dependency relationship between the
Stokes parameters and gain a physical interpretation of this dependency,
assume that the receiving antenna is identical with the transmitting
antenna and oriented so that it receives all the power possible from
the transmitter (i, e.s

r t T t r t r t T t r _t
hg=hgs hy =hy i »ohy =h; , hg =ha, hy =hy , hg = hy),
¢~ Vo

From basic considerations, the power received in such a case is
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t

|

P = [[hr]T[nt] |2 =| nbb te
— | n

¢

= Ihghg+h§)n§,!= = (|ng |2+ [n§ %% = 2af)? .

The right-most side of this equation is evident from the definition
of h? . Now, start with Eq, (32) and find the power received in this
same case when using the Stokes parameters:

he
t ot t Lt bt t.a ta, .t t2
P= hr h; hy hd | ¢ = (h1)® + (h2)®+ (hy )% + (he)® .
e 1 3
t
_h4J

Equating these two expressions for power received yields the
following relationship:

(33) 2(hi)2 = (h1)? + (ho)? + (h3)? + (he)?

omhr= iz mi)2+ i .

This above relationship is valid not only for the transmitting antenna,
but for any completely polarized wave represented by the Stokes para-
meters, This result may be easily verified in general by substituting
into it the definitions of the Stokes parameters, Eq. (31), and carrying
out the indicated algebra.

In this section, a physical motivation for the definition of pure real
elements to represent a polarized wave (the Stokes parameters) was
first provided. Then these parameters were defined as matrix elements
related to the vector height of (or wave transmitted by) an antenna,
These parameters were defined in this manner so that it would be obvious
that the entire process of transmission and reception of the power of a
wave can be represented by matrix multiplication of these pure real Stokes
parameters, just as the transmission and reception of the complex voltage
of a wave can be represented by matrix multiplication of the complex vec-
tor height of the antennas., The definitions of the Stokes parameters thus
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developed are given in Eq. (31), and the matrix multiplication repre-
senting transmission and reception of power are given in Eq. (32).
Since there were four real Stokes parameters (instead of three) repre-
senting the polarization of a wave, it was noted that there existed one
dependency relationship between the parameters; this was developed
and is given in Eq. (33).

V. THE SCATTERING MATRIX FOR
THE STOKES PARAMETERS

In the previous section it was shown that the expression for the
power received by an antenna coming from an elliptically polarized
wave propagating directly from the transmitting antenna could be re-
presented in two forms; one employs the vector height matrices intro-
duced in Section III and the other employs the newly defined Stokes
parameter matrices, which are themselves functions of the vector
heights, The two representations are repeated below:

P= kl[hr]T[ht] lz ;

[hr] and [h't] are two-by-two complex matrices, vector heights of
transmitting and receiving antennas; and

P = k[Hy] T[H] ;

[Hr] and [Ht] are four-by-one real matrices, the Stokes parameters
of the vector heights of transmitting and receiving antenna, defined by
Eq. (31).

It is evident that in most instances where received power is the
variable of interest, the second representation employing the Stokes
parameters is more simple and straightforward to use. Consisting of
only real elements, this representation is readily adaptable to experi-
mentation involving real physical observables,

It was shown in Section IV that the process of transmission, scat-
tering by a surface, and reception also has a matrix representation in
terms of the vector heights and the two-by-two complex scattering
matrix, The power received after such a process is immediately evi-
dent as the following:
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(34) P=k|[n]T [a]l[nel]? ;

here the elements of [hr], [a], and [ht] must be specified in the same
polarization representation; i.e., all linear, all circular, etc. The
elements of [a] are defined in Section II.

For the same reasons mentioned previously, such a representation
as that above is cumbersome; and since the matrices involve complex
elements, this representation is not easily amenable to the interpre-
tation of experimental data, as seen in Section IV,

It would seem a simple extension to define a pure real, four-
by-four matrix relating uniquely the Stokes parameters of the scattered
wave from the surface to the Stokes parameters of the wave incident
upon the surface, This would yield the following, much simpler form
for the power received after such a process:

(35) P=k[H]T[A]llR,] .

The elements of [A] are yet to be determined and defined, How-
ever, several properties of these elements can be stated beforehand,
One would expect and require that the elements of [A] should be functions
only of the elements of [a], just as the elements of [Hr] are functions
only of the elements of [hy], and the elements of [Ht] are functions only
of [ht]- Another way of saying the same thing is to state that in order
to be useful, the elements of [A] should be functions of the surface only
and invariant of the form of the incident radiation, This requirement
will be met in the development of [A]. ‘Since the original scattering
matrix [a] contained seven independent quantities in general, one would
expect that only seven of the elements of [A] would be independent, or,
in other words, the matrix [A] should contain combinations of only seven
independent quantities. This must be true since both [A] and [a] com-
pletely characterize the polarization properties of the scattered wave
in terms of those of the incident wave. Since there are 16 real elements
in [A], there must therefore exist nine dependency relationships between
these elements, Note that in the case of backscattering it was shown
that aj; = az1 in the matrix [a]. This means that the number of indepen-
dent quantities in [a] is reduced to five instead of seven for this special
case, Thus, only five of the elements of [A] should be independent in
the case of backscattering,

45



The following procedure will be followed in the development of
the scattering matrix [A]: (1) the Stokes parameters of an incident
and scattered wave will be defined in terms of the properties of the
polarized incident and scattered electric field; (2) the scattered
electric field will then be expressed in terms of the incident electric
field and the elements of the scattering matrix [a]; and (3) the Stokes
parameters of the scattered wave will then be found in terms of the
Stokes parameters of the incident wave and various combinations of
the elements of [a]. This will then define the elements of [A].

The Stokes parameters of the incident field are H}, Hg“. H31, H;i;

the Stokes parameters of the scattered field are Hls, st. H,s, Hf.
The matrix [A] expressing the relationship between them for a given

surface appears in the following equation:

- - F i
Hlﬂ Qi Q1z Qi3 GLJ HJ
Hy 1 Qz1 Qzz Q3 Qy Hz;1

H,? 4rrg Q1 O3z 033 Og4 Hsi

| HE | G0 G O 0w |HS

rg = distance from the surface to the point of observation of the scat-
tered wave.

The Stokes parameters of the incident and scattered field are
defined as follows, using Eq. (31):

ERES*+ESES¥ el gi* +gl ¥
(37) Hf = BEg +EGEy copgim 878 e ,
Jz {2
* _5_g¥ i _i% _i_i%
ESES -E°E EfEf -ELE
HS =z 970 "7 H}E 056 "To™0
[2 J2
8~S% * 1 i 1%
s ESE§ +E§ES . EGEb +EbE]
3 - b) 3
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and

g
P

e el £l £
; I'I‘S! ¢ ¢) .
iz

s

jr

H® =

The elementary scattering matrix [a] relating EB and E? to Ee
and E¢ is repeated below, along with its complex conjugate re?atlonship

E 1 an ai Eg
(38) = lxr ;
Es 8 azer azz Ei
¢ 2 ¢
sk * i%
6 ) an® an; Eg
—-—z—_ y *
g [amzg * % i*
Ey a1  az Ep

In the definition (Eq. (37)) of the Stokes parameters of the scattered
wave, the following quantities appear;

§_.8% s_.s%¥
EeEe s E¢,E9 » E9E¢ » and EyEg

These quantities can be easily determined for Eq. (38), in terms of the
incident field and the elements of the scattering matrix., Their relation-
ship is best summarized by the following matrix:

- % %* %* ¥ i _i%]
Ee Ee {au 211 ayzair  aipal aizai; EGEG
* * * * { i%
E<?>E3 1 aziail azzail azai azz ai; E¢ Eg
(39) B e %
S 8% |4 2 % % * %* i i
Ee E?tl) Trs ail azl alz azl ail azz alzazz Ee E(b
* * * * * i_i*
) (21221 32321 ax3x:z  2azan | | FEp

4

7

Now the quantities in Eq. (39) will be substituted into the definitions

of the Stokes parameters of the scattered field. Consider first Hf .



%*
EgEg +E¢,E¢ = anan E‘@Ee + ayz ann Eq)E%

~
z
L]
1]

* *
+ aj1 ai; E9E¢ + auau E¢E¢ + a,1ajx EeEg
%*
+ azaa E;Eé + azaz, EéE(; t az; azz E, ;
or
(z 8f = ku EJEF* + ki ELEE + g EYEY + 1 ELEY
where
ki = (aunan® + agan™)  ; kiz= (aan™ +azg an’™)
%
kiy = (amarz + azaz’) i ke =(azar +az; an’) .

Now J—Z_HIS can be re-arranged as follows:

1 i_i%

lz 8f = = = (kn+ ki) EgEg +7(ku+ ku)E¢E¢
+3 (kaim keg) ELE +(k ki) EL BV
z(u-uEee 5 (k- ku)EEg

1 ioqk 1 *
+ = (kigt ki) EQEY +7 (kia+kag ) EJE}

3% i %k

El Eé ! EéE:;

- T,_-j(kxz ~kig) 7T .
j

—J(ku - ki3)

When written in the above form the Stokes parameters of the incident
wave are obvious, i.e.,

2Hy° = (ki + kpHi + (kn -kaa)Hz' + (kaz + kag)Hs+ + j(kaz - kag)Hy .

From this, the following elements of the scattering matrix [A] are
obvious: 031, Q1,, Qig, C14. They are written in two alternative forms:
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the second form employs the definitions of the phase differences be-
tween the elements of the scatte ring matrix [a] as defined in Section
IV by Eq. (21).

%* %* X %k
(40) a1 = -i- (ki + ki14) =-;- (aman + aaa +apaiy +azgaz; )

z%[laulzﬁ‘ laz|* + laaa]® + laza® 1

and
1 *
Qyp = > (k11 -~ kiy) = %(‘an ann + a1 azl* - auaxz* - 222322 *)
1 2 2 2 2
=E[|aul + laal® - lan] “- |azal 71,
1 % * %* %
a3 =3 (kiz + kus) =-§- (anzam + azan +amainz +az;az )
1
s> [2|311Halzl008(63'61) + Zlaleazz!COS(ﬁa-Gz)] s
and

_ ' * * * *
g =Lk, - kyy) = -Zl(axz an’ + azax - anan - azaz )

.—.% [ZlanHalz|Sin(53-6l) + Zlan“az;]sin(ﬁg-ﬁz)] .

The other elements of the matrix [A] will be dérived in exactly
the same manner,

% % * % %* 4 *x
EgE§ -E3Eg = anan ESEY + anzan E(;Eie

J2 1, ®

+

% .
ali aiz EéE;)* + ala alz* E;E;* - az} azl* Eé Eé*

] 3% * *x %* 3
azz ast E:%)E*é - azlaz EléE(}) - azzaz E;E:; .

In exactly the same manner as before, define
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(41)
cont.

and

Define

(42)

*

% * *
aitan - azaz i kpa = ajzami - axaz

ka1

*

* , * X
ajral; - az az i ky = apain - azan .

1]
n

kas

i i i . i
2H;% = (kar+ kaa)Hi' + (ka1 - kgg)Hz ~ + (kpz + ka3)Hy  + jlkaz - ka2 )Hy';

1 1 * * * *
1= (ka1 + kag) = 3 (attan - azian + apzaiz - azzaz )

=%”aulz - lazl'z"’ |alzlz - ]azz|z] ;

1 1 *” o * *
Opz = 3 (ka1 - k) = 3 (arzai1 - aztaz - apaiy +t azaz )

=%[lan|z < Manl® - lal 4 laz! T,

_ 1 1 * * * *
Oz == (kgz tka3) =5 (arzanr - azzaal + anan - 222 )

it

';' [Zlaul!agzlcos(bg~51) - 2|aal]azz|cos(By-8;)] ,

¥

j * * * %
JZ—(ISZZ" kB) =IJZ' (a12a;1 - az2az1 - anaiz + azaz )

% [Zlan]!alz!sin(%-ﬁl) - Zlazlllazzlsm(as'ﬁz)] .
* % % *
azl ail EiéE'é + azan E(})EB

® ik ® _q_ix
azz alz Eq)Eé) +ana21 EeEe

3 *
[z 8,° = ESEY +E§E;

* i _ix
+ a1 aiz E9E¢,

+

® i _i* * _§ % x _{_i%
+ ajzaz E¢Eé aiiaz; E6E¢ + agzaz; E¢E¢.

-+

* ¥
= azzall apzazl

g
™
|

* *
ka1 = azrann + airazi H

% %
azzalz t+ aizaz .

* *
ks = azlai, + amaaz i kag
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— (42) %2 2HS = (ker+ kea)Hi + (ka1 - kag)H' + (kaz+ kas JHy + jlksa- kas )Hy ' ;

cont,
. * "
e Qg3 = 1 (ki + kaq) = Y (ama® +anaa +az alz* + a1 a; z*)
2 3 73
=% [2]an|]az|cos 8 + 2|a|laz|cos 8] ;
— 1 1 » : *x % *
%3=E(k31 ku)- (aztam + arraz - azgaiz - airazz )
_ 1
"2'[2!311||321|C°S 61- 2|a1z||azlcos 8 1,
— 1
%3= 7 (ka2 t+ kes) =5 (az an™ + anzazx’t +aman’ +auna; )
- 1
=3 [2]|a11!]azz|cos (65-5;-61) + 2|a1z||an|cos B ],
_ and
o j % * % *
O34 = %(ksz’ ks3) =%(a“ aix t+aizax - azai; - amazz )
=2 [2]an||az|sin(b; -6, -0 |a1z/|az|sin B
=5 a1 |lazz|8in(0y -0, -01) + 2 |a1z{|az|sin 3] .
5 - - ® g ¥ #* i i
j{2 B{ z-:;;l-:6 - E§ ¢, = agan EjE) + azzan E:;)E'é
RN : * 3
+ azl a]z EeEd) +, azzalz E;)E; ~ ajpazi EéEé
d o § o i% W _§_ix * i*
- ajzaz Eq)EB - ainaz; E9E¢ - ajzaz ¢, q) .
Define
(43) kg = aa au* - ai azx* i ke = azzau* - a2 az1*

% %
azzaiz - aizazz .

5 *
ke = aziaiz - airax ik
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. 2HP = -jlka+ kedHib - j(ka - kadHs' - jluat ka)Hs! + (ke - ke)Ha '
<. Oy :Q'L(k41+ ky) = % (an1 azz* - az all + an a2 - ax arz”)

L 12]aullaaulsin & + 2]a1z]]az;|sin 5,1 ;

[o¥}

Oy = -Z’]-(ku - ky) =4 (an az® - agan® - anzaz® + az an* )

1
=E [Zlanllazllsm 5 - Z'aleazzl sin 5;] ,
Q43 = —Z']-( 2t ke = = (an az - az an™ + amnaz” - aa a1" )

=1 [—2!2.11”8,2;’811’1(63-62-—61) + ZlauHan]sin 51,

[\¥)

and

1
> (kqz - kaa) = 5 (az2 ai’ - amazrr - azai;” + an az" )

E Zlan”azzlcos B3 -6, -04) - Zlaxz”an]cos 53]

Thus Eqgs. (35) - (38) constitute the definitions of the 16 real
elements of the scattering matrix relating the Stokes parameters of the
scattered field to the Stokes parameters of the incident field. These
elements are defined strictly in terms of the elements of the amplitude
scattering matrix [a]. These elements, as seen above, can be expressed
entirely in terms of the four amplitudes and three phase differences of the -
elements in [a]. This shows that there are only seven independent
quantities in the Stokes scattering matrix [A].

Notice that this matrix [A] is not symmetrical, in general; this
matrix is not symmetrical even in the special case of back-scattering,
when aj; = az1, as can be seen by comparing O to Q4.

The developments of this section suggest that in many cases it

might be easier to determine all the real elemeants of the Stokes scatter-
ing matrix [A] from measurement, knowing the Stokes parameters of
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the vector heights of the receiving and transmitting antennas (i.e.,

Hi‘» HZ, H?» Hf, and Hlto Hzt» Hst. H4t) by using Eq. (30). Certainly
knowing all the elements of the Stokes scattering matrix [A] also de-
termines uniquely all the elements of the elementary scattering mat-
rix [a]; as a matter of fact not all the 16 elements of [A] need be known
in order to determine the seven independent quantities in [a]. Only
seven need be known, but they must be the correct seven. In many
cases it might be easier to proceed in this manner than in the manner
of Section IV, which attempted to find the seven quantities of [a] dir-
.ectly by power measurement,

In this section the need for a four-by-four real matrix relating
the Stokes parameters of the field scattered from a surface to the
Stokes parameters of the incident field was shown and the properties
of such a matrix were discussed. The role of such a matrix in the
measurement of power received by an antenna after being transmitted
and scattered by a surface is shown in Eq. (30). The actual elements
of this matrix are developed in terms of the elements of the original
scattering matrix [a], and the relations between them are given in
Eqgs. (35) - (38).
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